\(\int (a+a \sec (e+f x))^3 (c-c \sec (e+f x))^4 \, dx\) [12]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 26, antiderivative size = 132 \[ \int (a+a \sec (e+f x))^3 (c-c \sec (e+f x))^4 \, dx=a^3 c^4 x-\frac {5 a^3 c^4 \text {arctanh}(\sin (e+f x))}{16 f}-\frac {a^3 \left (16 c^4-5 c^4 \sec (e+f x)\right ) \tan (e+f x)}{16 f}+\frac {a^3 \left (8 c^4-5 c^4 \sec (e+f x)\right ) \tan ^3(e+f x)}{24 f}-\frac {a^3 \left (6 c^4-5 c^4 \sec (e+f x)\right ) \tan ^5(e+f x)}{30 f} \]

[Out]

a^3*c^4*x-5/16*a^3*c^4*arctanh(sin(f*x+e))/f-1/16*a^3*(16*c^4-5*c^4*sec(f*x+e))*tan(f*x+e)/f+1/24*a^3*(8*c^4-5
*c^4*sec(f*x+e))*tan(f*x+e)^3/f-1/30*a^3*(6*c^4-5*c^4*sec(f*x+e))*tan(f*x+e)^5/f

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {3989, 3966, 3855} \[ \int (a+a \sec (e+f x))^3 (c-c \sec (e+f x))^4 \, dx=-\frac {5 a^3 c^4 \text {arctanh}(\sin (e+f x))}{16 f}-\frac {a^3 \tan ^5(e+f x) \left (6 c^4-5 c^4 \sec (e+f x)\right )}{30 f}+\frac {a^3 \tan ^3(e+f x) \left (8 c^4-5 c^4 \sec (e+f x)\right )}{24 f}-\frac {a^3 \tan (e+f x) \left (16 c^4-5 c^4 \sec (e+f x)\right )}{16 f}+a^3 c^4 x \]

[In]

Int[(a + a*Sec[e + f*x])^3*(c - c*Sec[e + f*x])^4,x]

[Out]

a^3*c^4*x - (5*a^3*c^4*ArcTanh[Sin[e + f*x]])/(16*f) - (a^3*(16*c^4 - 5*c^4*Sec[e + f*x])*Tan[e + f*x])/(16*f)
 + (a^3*(8*c^4 - 5*c^4*Sec[e + f*x])*Tan[e + f*x]^3)/(24*f) - (a^3*(6*c^4 - 5*c^4*Sec[e + f*x])*Tan[e + f*x]^5
)/(30*f)

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3966

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-e)*(e*Cot
[c + d*x])^(m - 1)*((a*m + b*(m - 1)*Csc[c + d*x])/(d*m*(m - 1))), x] - Dist[e^2/m, Int[(e*Cot[c + d*x])^(m -
2)*(a*m + b*(m - 1)*Csc[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m, 1]

Rule 3989

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Di
st[((-a)*c)^m, Int[Cot[e + f*x]^(2*m)*(c + d*Csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[n] &&  !(IntegerQ[n] && GtQ[m - n, 0])

Rubi steps \begin{align*} \text {integral}& = -\left (\left (a^3 c^3\right ) \int (c-c \sec (e+f x)) \tan ^6(e+f x) \, dx\right ) \\ & = -\frac {a^3 \left (6 c^4-5 c^4 \sec (e+f x)\right ) \tan ^5(e+f x)}{30 f}+\frac {1}{6} \left (a^3 c^3\right ) \int (6 c-5 c \sec (e+f x)) \tan ^4(e+f x) \, dx \\ & = \frac {a^3 \left (8 c^4-5 c^4 \sec (e+f x)\right ) \tan ^3(e+f x)}{24 f}-\frac {a^3 \left (6 c^4-5 c^4 \sec (e+f x)\right ) \tan ^5(e+f x)}{30 f}-\frac {1}{24} \left (a^3 c^3\right ) \int (24 c-15 c \sec (e+f x)) \tan ^2(e+f x) \, dx \\ & = -\frac {a^3 \left (16 c^4-5 c^4 \sec (e+f x)\right ) \tan (e+f x)}{16 f}+\frac {a^3 \left (8 c^4-5 c^4 \sec (e+f x)\right ) \tan ^3(e+f x)}{24 f}-\frac {a^3 \left (6 c^4-5 c^4 \sec (e+f x)\right ) \tan ^5(e+f x)}{30 f}+\frac {1}{48} \left (a^3 c^3\right ) \int (48 c-15 c \sec (e+f x)) \, dx \\ & = a^3 c^4 x-\frac {a^3 \left (16 c^4-5 c^4 \sec (e+f x)\right ) \tan (e+f x)}{16 f}+\frac {a^3 \left (8 c^4-5 c^4 \sec (e+f x)\right ) \tan ^3(e+f x)}{24 f}-\frac {a^3 \left (6 c^4-5 c^4 \sec (e+f x)\right ) \tan ^5(e+f x)}{30 f}-\frac {1}{16} \left (5 a^3 c^4\right ) \int \sec (e+f x) \, dx \\ & = a^3 c^4 x-\frac {5 a^3 c^4 \text {arctanh}(\sin (e+f x))}{16 f}-\frac {a^3 \left (16 c^4-5 c^4 \sec (e+f x)\right ) \tan (e+f x)}{16 f}+\frac {a^3 \left (8 c^4-5 c^4 \sec (e+f x)\right ) \tan ^3(e+f x)}{24 f}-\frac {a^3 \left (6 c^4-5 c^4 \sec (e+f x)\right ) \tan ^5(e+f x)}{30 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.16 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.25 \[ \int (a+a \sec (e+f x))^3 (c-c \sec (e+f x))^4 \, dx=\frac {a^3 c^4 \sec ^6(e+f x) \left (1200 e+1200 f x-1200 \text {arctanh}(\sin (e+f x)) \cos ^6(e+f x)+1800 (e+f x) \cos (2 (e+f x))+720 e \cos (4 (e+f x))+720 f x \cos (4 (e+f x))+120 e \cos (6 (e+f x))+120 f x \cos (6 (e+f x))+450 \sin (e+f x)-600 \sin (2 (e+f x))-25 \sin (3 (e+f x))-384 \sin (4 (e+f x))+165 \sin (5 (e+f x))-184 \sin (6 (e+f x))\right )}{3840 f} \]

[In]

Integrate[(a + a*Sec[e + f*x])^3*(c - c*Sec[e + f*x])^4,x]

[Out]

(a^3*c^4*Sec[e + f*x]^6*(1200*e + 1200*f*x - 1200*ArcTanh[Sin[e + f*x]]*Cos[e + f*x]^6 + 1800*(e + f*x)*Cos[2*
(e + f*x)] + 720*e*Cos[4*(e + f*x)] + 720*f*x*Cos[4*(e + f*x)] + 120*e*Cos[6*(e + f*x)] + 120*f*x*Cos[6*(e + f
*x)] + 450*Sin[e + f*x] - 600*Sin[2*(e + f*x)] - 25*Sin[3*(e + f*x)] - 384*Sin[4*(e + f*x)] + 165*Sin[5*(e + f
*x)] - 184*Sin[6*(e + f*x)]))/(3840*f)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 3.83 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.56

method result size
risch \(a^{3} c^{4} x -\frac {i c^{4} a^{3} \left (165 \,{\mathrm e}^{11 i \left (f x +e \right )}+720 \,{\mathrm e}^{10 i \left (f x +e \right )}-25 \,{\mathrm e}^{9 i \left (f x +e \right )}+2160 \,{\mathrm e}^{8 i \left (f x +e \right )}+450 \,{\mathrm e}^{7 i \left (f x +e \right )}+3680 \,{\mathrm e}^{6 i \left (f x +e \right )}-450 \,{\mathrm e}^{5 i \left (f x +e \right )}+3360 \,{\mathrm e}^{4 i \left (f x +e \right )}+25 \,{\mathrm e}^{3 i \left (f x +e \right )}+1488 \,{\mathrm e}^{2 i \left (f x +e \right )}-165 \,{\mathrm e}^{i \left (f x +e \right )}+368\right )}{120 f \left (1+{\mathrm e}^{2 i \left (f x +e \right )}\right )^{6}}+\frac {5 c^{4} a^{3} \ln \left ({\mathrm e}^{i \left (f x +e \right )}-i\right )}{16 f}-\frac {5 c^{4} a^{3} \ln \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}{16 f}\) \(206\)
parallelrisch \(-\frac {5 a^{3} \left (\frac {\left (-5-\frac {15 \cos \left (2 f x +2 e \right )}{2}-3 \cos \left (4 f x +4 e \right )-\frac {\cos \left (6 f x +6 e \right )}{2}\right ) \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )}{8}+\frac {\left (5+\frac {\cos \left (6 f x +6 e \right )}{2}+3 \cos \left (4 f x +4 e \right )+\frac {15 \cos \left (2 f x +2 e \right )}{2}\right ) \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}{8}-3 f x \cos \left (2 f x +2 e \right )-\frac {6 f x \cos \left (4 f x +4 e \right )}{5}-\frac {f x \cos \left (6 f x +6 e \right )}{5}-2 f x +\sin \left (2 f x +2 e \right )+\frac {\sin \left (3 f x +3 e \right )}{24}+\frac {16 \sin \left (4 f x +4 e \right )}{25}-\frac {11 \sin \left (5 f x +5 e \right )}{40}+\frac {23 \sin \left (6 f x +6 e \right )}{75}-\frac {3 \sin \left (f x +e \right )}{4}\right ) c^{4}}{f \left (6 \cos \left (4 f x +4 e \right )+10+15 \cos \left (2 f x +2 e \right )+\cos \left (6 f x +6 e \right )\right )}\) \(250\)
derivativedivides \(\frac {c^{4} a^{3} \left (-\left (-\frac {\sec \left (f x +e \right )^{5}}{6}-\frac {5 \sec \left (f x +e \right )^{3}}{24}-\frac {5 \sec \left (f x +e \right )}{16}\right ) \tan \left (f x +e \right )+\frac {5 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{16}\right )+c^{4} a^{3} \left (-\frac {8}{15}-\frac {\sec \left (f x +e \right )^{4}}{5}-\frac {4 \sec \left (f x +e \right )^{2}}{15}\right ) \tan \left (f x +e \right )-3 c^{4} a^{3} \left (-\left (-\frac {\sec \left (f x +e \right )^{3}}{4}-\frac {3 \sec \left (f x +e \right )}{8}\right ) \tan \left (f x +e \right )+\frac {3 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{8}\right )-3 c^{4} a^{3} \left (-\frac {2}{3}-\frac {\sec \left (f x +e \right )^{2}}{3}\right ) \tan \left (f x +e \right )+3 c^{4} a^{3} \left (\frac {\sec \left (f x +e \right ) \tan \left (f x +e \right )}{2}+\frac {\ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{2}\right )-3 c^{4} a^{3} \tan \left (f x +e \right )-c^{4} a^{3} \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )+c^{4} a^{3} \left (f x +e \right )}{f}\) \(267\)
default \(\frac {c^{4} a^{3} \left (-\left (-\frac {\sec \left (f x +e \right )^{5}}{6}-\frac {5 \sec \left (f x +e \right )^{3}}{24}-\frac {5 \sec \left (f x +e \right )}{16}\right ) \tan \left (f x +e \right )+\frac {5 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{16}\right )+c^{4} a^{3} \left (-\frac {8}{15}-\frac {\sec \left (f x +e \right )^{4}}{5}-\frac {4 \sec \left (f x +e \right )^{2}}{15}\right ) \tan \left (f x +e \right )-3 c^{4} a^{3} \left (-\left (-\frac {\sec \left (f x +e \right )^{3}}{4}-\frac {3 \sec \left (f x +e \right )}{8}\right ) \tan \left (f x +e \right )+\frac {3 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{8}\right )-3 c^{4} a^{3} \left (-\frac {2}{3}-\frac {\sec \left (f x +e \right )^{2}}{3}\right ) \tan \left (f x +e \right )+3 c^{4} a^{3} \left (\frac {\sec \left (f x +e \right ) \tan \left (f x +e \right )}{2}+\frac {\ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{2}\right )-3 c^{4} a^{3} \tan \left (f x +e \right )-c^{4} a^{3} \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )+c^{4} a^{3} \left (f x +e \right )}{f}\) \(267\)
parts \(a^{3} c^{4} x +\frac {c^{4} a^{3} \left (-\left (-\frac {\sec \left (f x +e \right )^{5}}{6}-\frac {5 \sec \left (f x +e \right )^{3}}{24}-\frac {5 \sec \left (f x +e \right )}{16}\right ) \tan \left (f x +e \right )+\frac {5 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{16}\right )}{f}-\frac {c^{4} a^{3} \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{f}-\frac {3 c^{4} a^{3} \tan \left (f x +e \right )}{f}+\frac {3 c^{4} a^{3} \left (\frac {\sec \left (f x +e \right ) \tan \left (f x +e \right )}{2}+\frac {\ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{2}\right )}{f}-\frac {3 c^{4} a^{3} \left (-\frac {2}{3}-\frac {\sec \left (f x +e \right )^{2}}{3}\right ) \tan \left (f x +e \right )}{f}-\frac {3 c^{4} a^{3} \left (-\left (-\frac {\sec \left (f x +e \right )^{3}}{4}-\frac {3 \sec \left (f x +e \right )}{8}\right ) \tan \left (f x +e \right )+\frac {3 \ln \left (\sec \left (f x +e \right )+\tan \left (f x +e \right )\right )}{8}\right )}{f}+\frac {c^{4} a^{3} \left (-\frac {8}{15}-\frac {\sec \left (f x +e \right )^{4}}{5}-\frac {4 \sec \left (f x +e \right )^{2}}{15}\right ) \tan \left (f x +e \right )}{f}\) \(280\)
norman \(\frac {a^{3} c^{4} x +a^{3} c^{4} x \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{12}-6 a^{3} c^{4} x \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}+15 a^{3} c^{4} x \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{4}-20 a^{3} c^{4} x \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{6}+15 a^{3} c^{4} x \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{8}-6 a^{3} c^{4} x \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{10}-\frac {11 c^{4} a^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{8 f}+\frac {73 c^{4} a^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}}{8 f}-\frac {523 c^{4} a^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}}{20 f}+\frac {853 c^{4} a^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{7}}{20 f}-\frac {389 c^{4} a^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{9}}{24 f}+\frac {21 c^{4} a^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{11}}{8 f}}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-1\right )^{6}}+\frac {5 c^{4} a^{3} \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )}{16 f}-\frac {5 c^{4} a^{3} \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}{16 f}\) \(322\)

[In]

int((a+a*sec(f*x+e))^3*(c-c*sec(f*x+e))^4,x,method=_RETURNVERBOSE)

[Out]

a^3*c^4*x-1/120*I*c^4*a^3*(165*exp(11*I*(f*x+e))+720*exp(10*I*(f*x+e))-25*exp(9*I*(f*x+e))+2160*exp(8*I*(f*x+e
))+450*exp(7*I*(f*x+e))+3680*exp(6*I*(f*x+e))-450*exp(5*I*(f*x+e))+3360*exp(4*I*(f*x+e))+25*exp(3*I*(f*x+e))+1
488*exp(2*I*(f*x+e))-165*exp(I*(f*x+e))+368)/f/(1+exp(2*I*(f*x+e)))^6+5/16*c^4*a^3/f*ln(exp(I*(f*x+e))-I)-5/16
*c^4*a^3/f*ln(exp(I*(f*x+e))+I)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.36 \[ \int (a+a \sec (e+f x))^3 (c-c \sec (e+f x))^4 \, dx=\frac {480 \, a^{3} c^{4} f x \cos \left (f x + e\right )^{6} - 75 \, a^{3} c^{4} \cos \left (f x + e\right )^{6} \log \left (\sin \left (f x + e\right ) + 1\right ) + 75 \, a^{3} c^{4} \cos \left (f x + e\right )^{6} \log \left (-\sin \left (f x + e\right ) + 1\right ) - 2 \, {\left (368 \, a^{3} c^{4} \cos \left (f x + e\right )^{5} - 165 \, a^{3} c^{4} \cos \left (f x + e\right )^{4} - 176 \, a^{3} c^{4} \cos \left (f x + e\right )^{3} + 130 \, a^{3} c^{4} \cos \left (f x + e\right )^{2} + 48 \, a^{3} c^{4} \cos \left (f x + e\right ) - 40 \, a^{3} c^{4}\right )} \sin \left (f x + e\right )}{480 \, f \cos \left (f x + e\right )^{6}} \]

[In]

integrate((a+a*sec(f*x+e))^3*(c-c*sec(f*x+e))^4,x, algorithm="fricas")

[Out]

1/480*(480*a^3*c^4*f*x*cos(f*x + e)^6 - 75*a^3*c^4*cos(f*x + e)^6*log(sin(f*x + e) + 1) + 75*a^3*c^4*cos(f*x +
 e)^6*log(-sin(f*x + e) + 1) - 2*(368*a^3*c^4*cos(f*x + e)^5 - 165*a^3*c^4*cos(f*x + e)^4 - 176*a^3*c^4*cos(f*
x + e)^3 + 130*a^3*c^4*cos(f*x + e)^2 + 48*a^3*c^4*cos(f*x + e) - 40*a^3*c^4)*sin(f*x + e))/(f*cos(f*x + e)^6)

Sympy [F]

\[ \int (a+a \sec (e+f x))^3 (c-c \sec (e+f x))^4 \, dx=a^{3} c^{4} \left (\int 1\, dx + \int \left (- \sec {\left (e + f x \right )}\right )\, dx + \int \left (- 3 \sec ^{2}{\left (e + f x \right )}\right )\, dx + \int 3 \sec ^{3}{\left (e + f x \right )}\, dx + \int 3 \sec ^{4}{\left (e + f x \right )}\, dx + \int \left (- 3 \sec ^{5}{\left (e + f x \right )}\right )\, dx + \int \left (- \sec ^{6}{\left (e + f x \right )}\right )\, dx + \int \sec ^{7}{\left (e + f x \right )}\, dx\right ) \]

[In]

integrate((a+a*sec(f*x+e))**3*(c-c*sec(f*x+e))**4,x)

[Out]

a**3*c**4*(Integral(1, x) + Integral(-sec(e + f*x), x) + Integral(-3*sec(e + f*x)**2, x) + Integral(3*sec(e +
f*x)**3, x) + Integral(3*sec(e + f*x)**4, x) + Integral(-3*sec(e + f*x)**5, x) + Integral(-sec(e + f*x)**6, x)
 + Integral(sec(e + f*x)**7, x))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 334 vs. \(2 (124) = 248\).

Time = 0.20 (sec) , antiderivative size = 334, normalized size of antiderivative = 2.53 \[ \int (a+a \sec (e+f x))^3 (c-c \sec (e+f x))^4 \, dx=-\frac {32 \, {\left (3 \, \tan \left (f x + e\right )^{5} + 10 \, \tan \left (f x + e\right )^{3} + 15 \, \tan \left (f x + e\right )\right )} a^{3} c^{4} - 480 \, {\left (\tan \left (f x + e\right )^{3} + 3 \, \tan \left (f x + e\right )\right )} a^{3} c^{4} - 480 \, {\left (f x + e\right )} a^{3} c^{4} + 5 \, a^{3} c^{4} {\left (\frac {2 \, {\left (15 \, \sin \left (f x + e\right )^{5} - 40 \, \sin \left (f x + e\right )^{3} + 33 \, \sin \left (f x + e\right )\right )}}{\sin \left (f x + e\right )^{6} - 3 \, \sin \left (f x + e\right )^{4} + 3 \, \sin \left (f x + e\right )^{2} - 1} - 15 \, \log \left (\sin \left (f x + e\right ) + 1\right ) + 15 \, \log \left (\sin \left (f x + e\right ) - 1\right )\right )} - 90 \, a^{3} c^{4} {\left (\frac {2 \, {\left (3 \, \sin \left (f x + e\right )^{3} - 5 \, \sin \left (f x + e\right )\right )}}{\sin \left (f x + e\right )^{4} - 2 \, \sin \left (f x + e\right )^{2} + 1} - 3 \, \log \left (\sin \left (f x + e\right ) + 1\right ) + 3 \, \log \left (\sin \left (f x + e\right ) - 1\right )\right )} + 360 \, a^{3} c^{4} {\left (\frac {2 \, \sin \left (f x + e\right )}{\sin \left (f x + e\right )^{2} - 1} - \log \left (\sin \left (f x + e\right ) + 1\right ) + \log \left (\sin \left (f x + e\right ) - 1\right )\right )} + 480 \, a^{3} c^{4} \log \left (\sec \left (f x + e\right ) + \tan \left (f x + e\right )\right ) + 1440 \, a^{3} c^{4} \tan \left (f x + e\right )}{480 \, f} \]

[In]

integrate((a+a*sec(f*x+e))^3*(c-c*sec(f*x+e))^4,x, algorithm="maxima")

[Out]

-1/480*(32*(3*tan(f*x + e)^5 + 10*tan(f*x + e)^3 + 15*tan(f*x + e))*a^3*c^4 - 480*(tan(f*x + e)^3 + 3*tan(f*x
+ e))*a^3*c^4 - 480*(f*x + e)*a^3*c^4 + 5*a^3*c^4*(2*(15*sin(f*x + e)^5 - 40*sin(f*x + e)^3 + 33*sin(f*x + e))
/(sin(f*x + e)^6 - 3*sin(f*x + e)^4 + 3*sin(f*x + e)^2 - 1) - 15*log(sin(f*x + e) + 1) + 15*log(sin(f*x + e) -
 1)) - 90*a^3*c^4*(2*(3*sin(f*x + e)^3 - 5*sin(f*x + e))/(sin(f*x + e)^4 - 2*sin(f*x + e)^2 + 1) - 3*log(sin(f
*x + e) + 1) + 3*log(sin(f*x + e) - 1)) + 360*a^3*c^4*(2*sin(f*x + e)/(sin(f*x + e)^2 - 1) - log(sin(f*x + e)
+ 1) + log(sin(f*x + e) - 1)) + 480*a^3*c^4*log(sec(f*x + e) + tan(f*x + e)) + 1440*a^3*c^4*tan(f*x + e))/f

Giac [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 191, normalized size of antiderivative = 1.45 \[ \int (a+a \sec (e+f x))^3 (c-c \sec (e+f x))^4 \, dx=\frac {240 \, {\left (f x + e\right )} a^{3} c^{4} - 75 \, a^{3} c^{4} \log \left ({\left | \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1 \right |}\right ) + 75 \, a^{3} c^{4} \log \left ({\left | \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1 \right |}\right ) + \frac {2 \, {\left (315 \, a^{3} c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{11} - 1945 \, a^{3} c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{9} + 5118 \, a^{3} c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{7} - 3138 \, a^{3} c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{5} + 1095 \, a^{3} c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} - 165 \, a^{3} c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )}^{6}}}{240 \, f} \]

[In]

integrate((a+a*sec(f*x+e))^3*(c-c*sec(f*x+e))^4,x, algorithm="giac")

[Out]

1/240*(240*(f*x + e)*a^3*c^4 - 75*a^3*c^4*log(abs(tan(1/2*f*x + 1/2*e) + 1)) + 75*a^3*c^4*log(abs(tan(1/2*f*x
+ 1/2*e) - 1)) + 2*(315*a^3*c^4*tan(1/2*f*x + 1/2*e)^11 - 1945*a^3*c^4*tan(1/2*f*x + 1/2*e)^9 + 5118*a^3*c^4*t
an(1/2*f*x + 1/2*e)^7 - 3138*a^3*c^4*tan(1/2*f*x + 1/2*e)^5 + 1095*a^3*c^4*tan(1/2*f*x + 1/2*e)^3 - 165*a^3*c^
4*tan(1/2*f*x + 1/2*e))/(tan(1/2*f*x + 1/2*e)^2 - 1)^6)/f

Mupad [B] (verification not implemented)

Time = 15.34 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.72 \[ \int (a+a \sec (e+f x))^3 (c-c \sec (e+f x))^4 \, dx=a^3\,c^4\,x+\frac {\frac {21\,a^3\,c^4\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^{11}}{8}-\frac {389\,a^3\,c^4\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^9}{24}+\frac {853\,a^3\,c^4\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^7}{20}-\frac {523\,a^3\,c^4\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^5}{20}+\frac {73\,a^3\,c^4\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3}{8}-\frac {11\,a^3\,c^4\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}{8}}{f\,\left ({\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^{12}-6\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^{10}+15\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^8-20\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^6+15\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4-6\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+1\right )}-\frac {5\,a^3\,c^4\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\right )}{8\,f} \]

[In]

int((a + a/cos(e + f*x))^3*(c - c/cos(e + f*x))^4,x)

[Out]

a^3*c^4*x + ((73*a^3*c^4*tan(e/2 + (f*x)/2)^3)/8 - (523*a^3*c^4*tan(e/2 + (f*x)/2)^5)/20 + (853*a^3*c^4*tan(e/
2 + (f*x)/2)^7)/20 - (389*a^3*c^4*tan(e/2 + (f*x)/2)^9)/24 + (21*a^3*c^4*tan(e/2 + (f*x)/2)^11)/8 - (11*a^3*c^
4*tan(e/2 + (f*x)/2))/8)/(f*(15*tan(e/2 + (f*x)/2)^4 - 6*tan(e/2 + (f*x)/2)^2 - 20*tan(e/2 + (f*x)/2)^6 + 15*t
an(e/2 + (f*x)/2)^8 - 6*tan(e/2 + (f*x)/2)^10 + tan(e/2 + (f*x)/2)^12 + 1)) - (5*a^3*c^4*atanh(tan(e/2 + (f*x)
/2)))/(8*f)